
Temperley-Lieb algebras and the long distance properties of statistical mechanical models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 7

(http://iopscience.iop.org/0305-4470/23/1/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 14:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 7-30. Printed in the L'K 

Temperley-Lieb algebras and the long distance properties of 
statistical mechanical models 

P P Martin 
Department of Mathematics, City University, Northampton Square, London EClV OHB, 
U K  

Received 1 December 1988 

Abstract. We write down the regular representation of the Temperley-Lieb algebra T, ( 4 )  
in the basis of reduced words on the k Temperley-Lieb generators. When k = 2 n - l ,  
representations of these generators may be used to construct the transfer matrices for 
statistical mechanical models on an n-site wide lattice. We show that the generically 
irreducible representation of T l n - , ( 4 )  responsible for the unique free energy in such models 
may be restricted to the regular representation of T,r - , (4) .  We give equivalent forms for 
the regular representation, derived from lattice models, which manifest its indecomposable 
structure when k and 4 are such that T h ( 4 )  is semisimple. We hence generalise to obtain 
the structure of T h ( 4 )  when not semisimple. 

A transfer matrix built with generators in the regular representation gives the long 
distance properties of all possible such models. We show how to find the semisimple 
quotient algebra which gives these long distance properties when T k ( 4 )  itself is not 
semisimple. We hence classify the long distance properties of these statistical mechanical 
models. 

1. Introduction 

The n-site layer transfer matrices for a wide range of statistical mechanics models 
including the q-state Potts model, the percolation problem, the ice-type model (Baxter 
1982) and the critical Andrews-Baxter-Forrester (ABF) model (1984) may be written 
in the form 

Here the matrices { Ul} give a representation of the Temperley-Lieb algebra (Temperley 
and Lieb 1971) (hereafter referred to as TL)  Tz , - , (q)  defined by the relations 

uiu, =&ut 

with q in general an arbitrary scalar parameter labelling the model, and x is a 
temperature variable. The precise representation involved depends on the model and 
the boundary conditions. Many of these models are of particular interest because their 
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8 P P Martin 

critical field theory limits exhibit conformal symmetry (Friedan et a1 1984 ( FQS), Kuniba 
er al 1986 (KAW), Pasquier 1987). 

The long distance correlation properties of such a model are determined by the 
eigenvalues of the transfer matrix. To see this consider the correlation function for 
two separated local measurements 

(0,0,) = ( C Y  I Tm&-J6TM-"-'(P)/( CY1 T M  p) (3) 

where (a1 and (PI = I@)' are vectors corresponding to some boundary conditions, which 
may be written 

(a1 =c C,,(V,l (where ( u , l T = ( u , l A l  with A , > A , j J >  i )  
I 

such that c,,#O, and 6 is an operator of the form 

where D, is the result of a measurement 0 on state y and C, = 0 for i = 0 , .  . , k, - 1. 
We then have 

( Q o 0 , ) z  exP(-J/&) ( 5 )  

where &'=ln(Ao)-1n(Ak). 
These eigenvalues in turn are given by the roots of the characteristic polynomial 

of T, at least for finite n. In general the calculation of eigenvalues is thus greatly 
facilitated by the factorisation of the characteristic polynomial into its irreducible 
components (Ahlfors 1979). Each of these gives an analytically distinct part of the 
spectrum. A big step in this direction is the identification of irreducible representations 
in the model representation R, say, of the Temperley-Lieb algebra, since this gives a 
partial block diagonalisation of T. The remaining step is the incorporation of sym- 
metries such as translation invariance (see, for example, Schultz et a1 1964). 

In a recent paper (Martin 1988a) we showed how to identify the irreducible content 
of the Potts model representation, where attention is restricted to a particular semisimple 
quotient algebra considered by Jones (1983). In many of the interesting cases, however, 
the relevant algebras are not semisimple and an arbitrary representation cannot be 
written as a direct sum of irreducibles. In general this problem may be overcome by 
quotienting an algebra A by its radical JA (Anderson and Fuller 1974) which is the 
maximal nilpotent double-sided ideal subalgebra. Because this radical is nilpotent it 
contains only non-propagating contributions to the transfer matrix, which do not affect 
the bulk properties. The quotienting leaves a semisimple 'top' algebra A/J. In the 
Potts case the algebra is further quotiented to leave an algebra with only unitarisable 
representations (i.e. representations in which the { U,} are self-adjoint). This combined 
quotienting is relatively simple (see later), but unfortunately it has the effect of 
eliminating some propagating contributions, i.e. long distance properties, in more 
general models. For example, with 4 = 1 it leaves only a one-dimensional representation 
whereas, as we shall see, there are an infinite number of distinct irreducible representa- 
tions In the thermodynamic limit. These are physically relevant, for example, in the 
percolation problem (see Baxter 1982). We will discuss the minimal quotienting 
procedure which leaves all of them intact. 

Now, it is a general theorem that the regular representation contains copies of all 
the irreducible representations of an algebra (semisimple or otherwise) as simple 
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modules. In fact the regular representation may be written as a direct sum of indecom- 
posable projective left modules (indecomposable representations). There is a bijection 
between indecomposable projectives P and irreducibles S which sends P to P/JP. 
Furthermore, the multiplicity of P in the regular representation is the dimension of 
the associated irreducible. In the present paper we thus start by writing down the 
regular representation for the Temperley-Lieb algebra. We will give various bases for 
this representation, which will allow us to discuss the structure of the algebra, and  its 
top, and  hence label possible long distance properties of statistical mechanical models. 

For various reasons, interest in TL algebras is currently very high. In addition to 
their relevance for statistical mechanics and conformal field theory they have an intimate 
connection with knots and braids (see below). These are now the focus of physicists' 
attention in themselves, following recent remarks of Witten (1988) on their role in 
string theory. For this reason we will take the oppotunity here to provide the tools 
for a detailed analysis of any TL algebra. The regular representation has as a basis a 
spanning set of elements of the algebra. Specifically we may use the set of distinct 
words in {U,} .  We show how these operators may themselves be arranged to exhibit 
the structure of the algebra (i.e. as primitive idempotents and so on).  This necessarily 
involves conveying a fair number of new results. In the interests of brevity we will 
restrict ourselves to illustrative examples in the text, and leave proofs, where helpful, 
to the appendix. 

2. Preliminary technical remarks 

We will begin by making a few observations on T,(q) .  The elements 

(where e'+ e-' = Jq) obey the braid relations (Temperley 19861, plus 

and 

The algebra has an involution U,-+ U,-,,, (reflection on the lattice) and further 
automorphisms 

U, -+ su,s-' = U,,, 

(duality/translation) where 

so that, defining U, = SUkS- ' ,  we have U ,  = SU,,S-'. We will use the notation W T  
for the element obtained by writing the generators in element W in  reverse order. 
Note that ( 2 )  is invariant under the reversal T 
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A faithful diagrammatic realisation of words (products of generators U,)  in T k ( q )  
is obtained as follows. The generator U, is drawn as 

1 7 3 ..... i ;+1  ... k + l  

Generators are composed by connecting the bottom of the diagram for the first factor 
with the top of the diagram for the second, so UiU,+l U, = U, is 

1 + 2  

(note that we 
U,U, =JqUi is 

can pull straight the line starting in the i + 2  position); and 

Provided that we interpret closed loops as contributing a factor dq then these diagrams 
replace any word with an equivalent word (under the relations (2)) of shortest length 
in the generators, with an appropriate scalar factor. We will call the set of shortest 
words the reduced words. 

3. The defining representation 

The defining representation (TL) has U, E End( pki’), where the space V is two 
dimensional. Ordering the product of vector spaces (and labelling them in order) as 
VI 0 V 2 0  V,O . . . we have 

where x = l / y  = exp( e) and the 4 x 4 matrix acts on VI 0 V,,, . Note that the ordering 
is arbitrary. This representation breaks up into blocks as follows. Writing V = (1,2) 
we see that non-zero off-diagonal entries in U, just take 12 ( E  V ,  0 V,+,)*21. Writing 
an arbitrary basis state as a l a 2 .  . . ak+l (a i  E 1 ,2 )  we then note that only states with the 
same number of 1’s are mixed. We will write # (1) for the number of 1’s. 

Consider the subspace with #(1)=#(2)  or #(1)=#(2)+1.  This gives a faithful 
representation of the algebra. We demonstrate this by showing that each distinct linear 
combination of reduced words in the algebra is represented by a distinct matrix. To 
do this we introduce a partial order on the reduced words and show that each word 
gives a unit contribution to at least one matrix element with the property that only 
words immediately above it in the partial order also contribute to that matrix element. 
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The matrix elements are labelled by pairs of basis states each of which are some 
permutation of (for example, with k = 9)  1 1  1 1  122222. The partial order is as follows. 

Associate with the diagram for word w I  a basis pair with the property that, on 
labelling each endpoint by either 1 or 2, the endpoints connected in moving down the 
diagram are labelled the same, while those connected in the same layer are labelled 
12 (reading from left to right) in the top layer and 21 in the bottom layer. The labelling 
of downward connections here is not, in general, completely determined by # ( 1 ) .  The 
freedom arises simply because the representation is not irreducible. It will not affect 
our arguments. Considering the basis pair so formed, the partial order is the transitive 
extension of the relation w,  < w , ,  where w ,  < w2 if the corresponding basis pair for w2 
is the same up to the interchange of connected pairs of labels within a layer of the w, 
diagram. For example, the diagram corresponding to U, U, U, U,  has basis pair 1 1  122 + 

12211 in this construction, i.e. 

1 1 1 2 2  

1 2 2 1 1  

The diagram corresponding to U, U, U, U, U ,  has 1 1  122 + 2121 1 ,  which is the same up 
to the interchange of the first two numbers in the second state, so U3U2U4U3< 
U,U,U,U,U,. Note that every sequence w, < w,< . . . < wp ends with a word for 
which the basis pair supports no equivalent up to interchange. In our example the 
final word is U, U, U, U ,  U, U,, giving 1 1  122 + 221 11.  This pair can only be connected 
one way, regardless of the freedom to interchange. 

For each matrix element associated with a word as above, i.e. for each such pair 
of basis states, we can move from the first state to the second by a sequence of moves 
of the form a l a 2 a 3 a 4 . .  . 1 2 . .  . + a,a2a3a4.. . 21  . . . . For example, 11122-+ 12211 is 
achieved by 11122 -+ 11212 + 12112 + 12121 + 12211. From the definition of the 
representation we note that the matrix element of a corresponding word (where 
correspondence is defined as replacing each transposition by a U, in the equivalent 
position, i.e. U, U,  U, U, in the above example) is 1. If other words have non-vanishing 
contributions in this element then they are necessarily higher in the partial order, from 
the definition of the moves and the representation. To see this, note that other possible 
moves associated with non-vanishing matrix elements are 12 -+ 12 and 21 -+ 21. Since 
there is a unique final word in any partial order sequence we can read off the contribution 
of this word directly from the appropriate matrix element, subtract its contribution to 
other matrix elements accordingly, and hence iteratively read off the contribution of 
every word in the sequence. 

Note that subspaces with # ( 1 ) =  # (2)+p must have at least p lines travelling from 
the top layer to the bottom. By the same argument they thus give a faithful representa- 
tion of the algebra quotiented by words whose diagrams have fewer than p such lines. 

Given these results, once we have established the structure of the Temperley-Lieb 
algebra (see below) we could simply read off the structure of tensor product representa- 
tions of the corresponding quantum groups! We will carry out this procedure explicitly 
elsewhere. 
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4. The regular representation 

Consider the set of possible 'connectivities' (Blote and Nightingale 1982) of n sites, 
that is the subset of distinct partitions of n sites numbered 1 , .  . , , n which satisfy the 
condition that if sites a and c are connected (in the same partition) and sites b and 
d are connected and a < b < c < d then all four are connected. Number this set from 
1, .  . . , C,, and form 2n - 1 C,-dimensional matrices as follows: 

(UZj-,),k = q ' 6 j h )  if disconnecting the ith site takes connectivity j to k 

= O  otherwise 

(U?,) ,k  = q'6J""2 if connecting the ith and ( i  + 1)th sites takes j to k 

= O  otherwise. (7)  

These matrices form a representation of the Temperley-Lieb algebra for 2n-1  
operators. Up to a similarity transformation this is the representation we have called 
the Whitney representation (Martin 1986). The transfer matrix in this case is that of 
the n-site wide square lattice Whitney polynomial (Baxter 1982). When q = 4  the 
Temperley-Lieb algebra is a quotient algebra of the group algebra of the permutation 
group on 2n objects. The above representation is then an irreducible isomorphic to 
Young's semi-normal representation for tableau of two equal rows. We note by 
continuity that the representation is thus irreducible at all but a discrete set of q values 
(see also Hoefsmit 1974). 

The basis of C,, possible connectivities of n sites has a one-to-one mapping onto 
the set of distinct operator products (words) on n - 1 operators (including the identity). 
To see this, arrange the n sites into a (vertical) line (so that there are n - 1 gaps) and 
label any n - 1 consecutive sites and gaps from 1 to n - 1 (for definiteness starting at 
the topmost site, say). There is then a unique connectivity (partition) P, having 
[ ( n  + 1)/2] disconnected components arranged in such a way that imposing a connec- 
tion across any numbered gap changes the connectivity and disconnecting a numbered 
site changes the connectivity. In our case this is the partition {( 1,2n - l ) ,  (3,2n -3), . . }, 
The connectivity P ,  maps onto the identity. The connectivities associated with the 
other operator products are obtained by reading the operator product from right to 
left and, in that order, connecting the adjacent sites if the operator number corresponds 
to a gap, and disconnecting the site if the operator corresponds to a site. 

Repeated occurrences of a single operator only change the connectivity once; the 
effect of the sequence IY,U,*~U, is equivalent to the effect of U,;  and the order of 
operation for U,U, with l i - j l>  1 is unimportant (cf the defining relations). Note also 
that, as required, the number of distinct connectivities C,, (given by 

C, = 1 and C, = (4n - 2)C,,-J( n + 1) 

or equivalently by C, = ( 2 n ) ! / ( n ! ( n  + l ) ! )  = 1,2,5,  14,. . . (Blote and Nightingale 
1982)) is equal to the number of distinct words (Jones 1983). Now if we consider the 
set of matrices defined aboye, but restrict ourselves to the subset of n - 1 consecutive 
operators, we see that the action of each matrix gives precisely the action of the 
corresponding operator on each element of the set of distinct operator products. This 
is therefore the regular representation of the ( n  - 1)-operator algebra. 

Now the matrices defined above give a representation of the full ( 2 n  - 1)-operator 
algebra corresponding to the linear transformations induced in a certain minimal left 
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ideal LR. The ideal LR is generated by left multiplication of elements of the algebra 
on R, where 

R = U,. 
odd i 

To see this note that the set of connectivities above have a one-to-one mapping onto 
the set of distinct operator products (words) ending in R for 2n - 1 operators. The 
argument proceeds as before, except that all sites and  gaps are numbered, and  the 
‘seed’ partition corresponding to the product R itself is that with no sites connected. 
It is easy to see that (for q non-zero) the operator Rq-“I’ ( n  is the number of odd 
operators) is idempotent. This idempotent is also primitive. Thus provided the algebra 
is semisimple the representation is irreducible (Hamermesh 1962). In any case the 
restriction of this representation to the subalgebra generated by n - 1 consecutive 
generators gives the regular representation of the subalgebra. 

Before proceeding to analyse this representation it is useful to define another 
representation, which is a generalisation of the Andrews-Baxter- Forrester representa- 
tion discussed in KAW, i.e. that derived from the transfer matrix for the n-site diagonal 
layer critical ( r  - 1)-state Andrews-Baxter-Forrester model. Consider the set of 
sequences of 2n + 1 numbers s,, . . , such that sI = a, sZn+, = CY + m and Is, - S , + ~ I  = 1 
(so that m is an  even integer). The number of sequences in a set is the binomial 
coefficient (,,?+“:;*). Numbering the sequences from 1 and introducing the notation sl, 
for the ith element in the j t h  sequence, we may write down the following matrices: 

= O  otherwise (9) 
for i = 2, . . ,2n.  These matrices obey the Temperley-Lieb relations with q = 
4 cos’(.i.r/r). It is not necessary to restrict to integer r, and the generalisation to even 
numbers of generators is straightforward. Generically ( r  not integer) the transformation 
CY + CY + p is just a similarity transformation. These representations are equivalent to 
the blocks exhibited in the defining representation (above), and also discussed by 
Martin (1986) where they are termed the initially reduced Temperley-Lieb representa- 
tions. To be precise, rn is the surfeit of up  arrows over down arrows in the ice-model 
lattice layer. We can define 

f$ = 1 0  1 0  . . 0 [’ J0 . .  0 1  and a, ’=101@..O 

where the unit matrices are 2 x 2 ,  the Pauli matrix appears in the ith position in the 
product, and  the sub-basis states are directions of an  arrow on a bond of the ‘medial’ 
lattice. The objects 

U, = (T,’ a,’+l( 1 - a:a:+ I )  + e@( 1 + a;)( 1 - a:+ ,) + e-’( 1 - a:)( 1 + a;+ I )  

may then be simultaneously block diagonalised such that the bases for the blocks have 
a fixed excess of up  arrows over down arrows. These blocks are then isomorphic to 
the above representations. In the case q = 4 they correspond to permutation representa- 
tions of the permutation group in the canonical basis (Robinson 1961). 

Considering the form of U, in the cases a = p  (p integer) we note that here the 
subset of sequences obeying s,>O also provide the basis for a representation. In 
particular if p = 1 we recover the genericaily irreducible representations discussed, for 
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instance, by Jones (1983). By noting the action of U, on basis elements we may then 
associate primitive idempotents in the algebra with the various sequences (see also 
Temperley 1986, Goodman et a1 1987). For example, the action of U, on a sequence 
is: (i) to multiply by 4 i f  s,, s,+, , s,+? = 1,2,  1; (ii) to mix with the sequence identical 
in all but the ( i  + 1)th entry for s,, s,+,, s , + ~  = k, k i  1, k (integer k > 1); and (iii) to 
multiply by zero otherwise. Since the sequence 121212. . . 1212345 . . . ( m  + 1) is unique 
in having no subsequences of the form k, k + 1, k we start by writing down an idempotent 
I ,  for this. 

Define idem,[O] =idem,[l] = 1, and idem,[d+2] ( d  > -1) as the unique idem- 
potent operator which is left and right orthogonal to U,+*,,. . . , U1+2c+d and contains 
no other generators. Provided r‘> b (where r‘ is the denominator of r expressed in 
its lowest form for r rational, and is infinite otherwise) the operator idem[b] = idem,[b] 
may be constructed recursively as 

idem[b] = idem[b- 1](1- K ~ U ~ - ~ )  idem[b - 11 (10) 
where 1/Kb = 4- Kb-1 with K~ = I/&, i.e, 

s i n ( ( b - l ) r / r )  - sinh((b-1)O) 
K b  = - 

sin( b n / r )  sinh( b e )  ’ 

The general case may then be obtained by translation. For example 

idem,[2] = 1 - q-”’UltZL 

idem,[31= 1 + i u i + ~ c U ~ + - ? c  + u z + z c U i + 2 c  -J;f( U,+,, + U2+2c))/(q - 1) 

idemo[41= i - i ( w ) ( u l +  u 3 ) + q u 2 ) / ~ ( q - 2 )  
+ ( u1 u2 + 
+ ( U ,  U2 + U2 U ,  - 4 U ,  ) U, 1 / m q - 2) - ( 9 - 1 1 U ,  U,/ 4 ( q - 2 1 

U ,  + U, U, + U, u ~ ) /  ( 9 - 2) - ( U,( U ,  U,  + u2 U ,  - &U,)  

and so on (note the symmetry under U, + Ub-i in idem,[b]). For 2n - 2 +  a operators, 
where a = 2 or 1 and p = ( m  - a  + 1)/2, a suitable choice for the initial idempotent is 
then 

The idempotent I ,  is primitive and orthogonal to I ,  ( m  # n). Subsequent primitive 
idempotents are obtained inductively. That for a sequence with s i ,  si+,, si+> = k, k + 1, k 
is given by that for a sequence differing only in the ( i +  1)th position left and right 
mu 1 tip lied by 

- U,/Kk). (12) 
We see that this construction defines a partial order on the basis states labelled by a 
given m with those of the form 12121234567 (for example) the unique first and 
12345678987 (in this case) the unique last. 

Provided that none of the K~ vanish, we thus have the matrix algebras indicated by 
Jones (1983) (see also Temperley 1986). Off-diagonal elements (called elementary 
operators, after the corresponding elementary matrices) are obtained by only multiply- 
ing on the left (or right) of an idempotent by (12). The proof of the above statements 
is by a straightforward induction. Some explicit illustrative examples are given later. 
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Of greater interest, however, are cases where some K ,  do vanish. These occur at 
the ‘Beraha’ q values ( r  E Z, see Baxter 1982, 1987) which give conformal models at 
criticality (FQS, Cardy 1986). Here idem[r - 11 is well defined and, noting (6), we see 
in particular that {idem,[ r - 11 = 0 for all c} is the set of quotient relations satisfied by 
the ‘unitarisable’ semisimple quotient algebra associated with the Potts model (consider 
(9) with r E Z) .  We will return to these Beraha cases shortly. 

The physical significance of the above formalism is that we can construct an  operator 
appropriate for any observable in the sense of (5)  from these elementary units. If the 
algebra representation associated with a model is not irreducible, then the operator 6 
in (3) is not always expressible as an element of an algebra. We note from the above, 
however, that there is always an operator in, the algebra with the same long distance 
correlation properties (i.e. the same k,  as C’). I n  other words, the formalism above 
allows systematic access to the various analytically disjoint sectors of the spectrum of 
T For an  example of a physical observable which is expressible as an element of the 
algebra, consider the spin-spin correlation for two sites within a layer for the q = 2 
(Ising) case. Then for the sites at positions p and p + j we have 

P - J - 1  c =  n ( v 5 U 2 , - 1 )  
1 - P  

Our  formalism allows us to decompose this operator into elementary components. The 
expectation value can then be calculated in the (generally much smaller) irreducible 
subspaces. Examples of the use of this calculational tool are given by Martin (1988b). 
Of course the Schulti et a1 (1964) solution of the Ising model is another striking example. 

Note that with p = 1, m = 0 we have a representation of dimension C,, based on 
the same primitive idempotent as the Whitney representation (compare (8) with (1 1)). 
For integer r this representation has some divergent matrix elements if r < 2n + 1, but 
its trace is finite (and  equal to C,-l\’&see later) for all r. The representation may 
be made well defined by regarding r as a variable and making certain similarity 
transformations before taking r to its integer value. We will give examples shortly. 

If r is not rational then the representation is irreducible and thus equivalent to the 
Whitney representation. The restriction to n - 1 operators in this case is again, therefore, 
the regular representation of the subalgebra. In this basis, however, the irreducible 
content of the regular representation is easy to see as follows. The basis states are 
associated with distinct possible configurations of A R F  variables, s,, in a lattice layer, 
subject to the constraint that the boundary variables are set to s, = s Z n + ,  = 1. More 
generally, as we will see, if s, = 1 then the possible values of s Z n + ,  ( s > ~ - ~ )  give bases 
for the various irreducible representations of the 2n  - 1 (respectively 2n) operator 
algebra. In the ABF model there is the additional constraint that s, < r’. We have 
discarded this (but see K A W ) .  From the definition of the representation we note that, 
on restriction to thefirsr n - 1 operators, basis elements corresponding to configurations 
which differ in any of the last n + I variables are not coupled. Thus the representation 
breaks up  into blocks labelled by the ( n  + 1 )th and subsequent variables. But it is the 
( n  + 1)th variable alone which distinguishes these representations (see (9)). By reflection 
symmetry the multiplicity of each irreducible representation is thus equal to its 
dimension. This describes the regular representation for a semisimple algebra. The 
Bratelli diagram (Jones 1983) follows immediately, and  hence the trace of any generator 
can be computed. From (1) and Perron’s theorem (Bellman 1960) we then identify 
the m = 0 representation as the one responsible for the largest eigenvalue of the transfer 
matrix T (the free energy, see Baxter (1982)) for real temperatures. 
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In other words we have found a basis for the regular representation in which the 
irreducible content is manifest. Unfortunately in the non-semisimple cases ( r  integer) 
the similarity transformations required to render the matrix elements well defined 
obscure this picture. We must proceed more carefully. Let us consider an example 
which will illustrate the point, and also allow us to introduce some useful terminology. 
Adopting the shorthand ye = sin(y.rr / r ) /s in((y* 1 ) 7 ~ / r ) ,  the first few generators in the 
A B F  basis for the Whitney representation for 2 n  - 1 = 7 may be written 

U ,  = 

u2 = 

0 
2 

0 
2 

0 
2 

0 
0 

0 
0 

0 

1- 1 + 3  
1 3  

1 ,  1+3 
1 3-  

1, 1+3- 
1 3.. 

0 
3- 

1,3 

1 
0 

1,  
0 

c 
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U, = 

17 

- 2- 

- 

v4 = 

0 
0 

2, 
2- 

- 
1, 1 +3 

1, 
1 3- 

1 

- 

-0 - 
1 0  

U, = 0 
1 0  

- 0, 

1 

-0 
- 

1 0  
0 0 0 

- 0- 
1 0  

1 +3 

3- 

0 
0 

2- 

1 

2,4 

4- 
2 ,  

1 
0 

1, 1 +3 
1, 

1 3- 
1 

1 +3 

3- 
0 

0 
0 

0 
3, 3+5- 
1 5 -  

We may take any n - 1 = 3  of these generators consecutively to give the regular 
representation of the three-operator algebra. Generically we see (from the first three) 
that the indecomposable structure is 2P,O3 P30 1 P, , where each d-dimensional projec- 
tive Pd is also an  irreducible module. Now addressing the case r = 2 and using the 
operators U,, U,, U, we make similarity transforriiations of the form 

r --z 2 and hence obtain 

0 
0 

O 1  0 1 
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U3 = r A o l  jB 
O I  0 

0 
1 0  

U,= 1 0 
1 1 0 2  I -1 0 

0 1  
0 

0 1  
0 

c 
0 

0 
1 1 0 2  :i O 0 

0 0 

0 1  1 
0 
1 0 1  

0, 

i.e. 2 P 5 0 P 4  with simple content 2 (2S20S , )0 (2S ,0S2) .  
In fact our arrival at the correct answer was somewhat fortuitous. Consider the 

generic regular representation of one operator 

U = [ &  O]. 

This may be similaritv transformed to 

whereupon r + 2 gives the regular representation. However, if we put r = 2 in the 
original version we obtain an inequivalent representation! The reason is that if we 
look at the similarity transformation after r + 2  we find that it is singular. Care (or 
luck) is required to make these transformations in the right order. 

Now the off-diagonal element gluing two copies of the irreducible representation 
together in (15) is missing in (14). Henceforward we will use the term ‘glued’ to 
describe such an indecomposable arrangement of irreducibles. In the present case the 
algebra is spanned by (1, Ui} and the radical is { Ui}. The algebra quotiented by the 
radical here is the algebra with the additional relation Vi = 0 (hence the irreducible 
representation), while the radical element is represented by an upper triangular matrix. 
In general we can always use the ABF representations to give us the irreducible 
representations of the algebra, even if (as above) we taken insufficient care to preserve 
the regular representation. A quick way to check that we have preserved this as well 
is by dimension counting at the end! 

The other non-semisimple cases for three operators are q = 1: 

U,  =&diag(l,O, 1,0,0,0,  1,0, l,O, 0,1,0,0) 

U 3 = 4 d i a g ( l , 0 , 0 ,  1,0, 1,0,0,0, 1,0, 1,0,0) 

1 1 l )  [ : 1 1 :) 
u2=(’ I ) @ [  1 1 1 0  

- 1  -1 -1  -1  -1  -1 
0 0  ( : 1 1 :). 

0 
- 1  -1 -1  

‘A :) 
1 1 0  

so the top is M 3 ( C ) @ C 0 C  (11 degrees of freedom) and the nilpotent part has 
composition law 

( a ,  b, c)(x, Y ,  z )  = (090, b x )  (three degrees of freedom) 
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and 9 = 2 :  
U , = ~ d i a g ( l , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 )  
U3=fidiag(l,0,1,0,0,1,0,0,1,0,0,1,0,0) 

1 1 1 0  
1 1 1  1 1 1  

Uz=l,G[(: :).(: :).(I 0 0 0  +(; ;)e[: 1 1 1 0  ; : :i] 
i.e. the top is M z ( C ) O M z ( C ) O @  (9 degrees of freedom) and the nilpotent part has 
composition law 

( a ,  b, c, 4 
The idempotents and other elemenJary operators exhibiting this structure are discussed 
later. 

Y ,  z, t, U )  = (07% 070, cx + dY) (five degrees of freedom). 

5. The structure of the algebra: representation theory approach 

A convenient way to summarise the structure of the regular representation of n - 1 
operators is obtained as follows (we give a statement of this 'summary' without 
explanation in Martin and Westbury (1988) and Westbury (1988)). 

The idea is to make the m = 0 representation of 2 n  - 1 generators well defined for 
the value of r we want, and then to restrict to n - 1  generators as above. The point 
of this procedure is that, although glue may be lost in similarity transformations like 
that involved in taking equation (14) to (15), irreducible content cannot be lost. By 
making this representation well defined we make well defined certain irreducible 
representations of algebras with number of generators between n - 1 and 2 n  - 1 (see 
later). Since these irreducible representations are fully recovered, all the glue in 
representations obtained by restricting them to n - 1 generators is recovered. Such 
irreducibles restrict to include a complete set of indecomposable projective representa- 
tions at the n - 1 generator level, and therefore all the glue is faithfully represented. 

The number sequences {si} appropriate for the m = 0 representation of 2 n  - 1 
generators are represented as paths on a lattice, e.g. with n = 10 as in figure 1. The 
number of walks from (1, 1) to ( j ,  s)  on this lattice is 

(where (-"1) = O  (Jones 1983)). We arrange the set of walks from ( 1 , l )  to ( 2 n +  1 , l )  
into subsets labelled by the last n + 1 nodes. The first of these n is a node in the 
vertical centre line. We sort these centre nodes into node sets. The elements of a set 

1 2 3 4 5 6 7 8  10 12 
Figure 1. Positive walks from (1, 1) to (23 ,23 ) .  
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are mutual reflections in the various horizontal lines s = mr ( m  E Z + ), except for nodes 
on these lines, which each lie alone. 

Generically the walk subsets correspond to bases for irreducible representations 
of the first n - 1 operators, which are equivalent if and only if the centre node is the 
same. When r e Z  smaller irreducible subspaces may appear (as in Jones 1983), 
whereupon the generic irreducibles become glued pairs of irreducibles (in the sense 
of (15), see later), The cost of similarity transforms required to make matrix elements 
well defined is then to glue certain generic irreducibles (now glued pairs) in pairs. 
These similarity transforms also weaken the identification of walks with basis states. 
However we can still use the walk terminology as a convenient framework for our 
discussion. 

The rules for the gluing are as follows. If the centre node is on a line then each 
generic irreducible remains irreducible and  is not glued (see later). If no walk in the 
subset crosses the line above the centre node then the irreducible remains irreducible 
(the node is necessarily the top element of its node set). However, it is glued to a 
generic irreducible (glued pair) immediately below it in the same node set, if one 
exists. This latter is obtained by reflecting, in the line immediately below the node, 
the part of each walk between its closest crossings of the line on either side of the 
node. To get an  idea of this, note that it is similarity transforms between such pairs 
of walks which are required to eliminate divergences, so they get mixed. The idea is 
that this mixing absorbs the lower generic irreducible into the current projective. 

Other generic irreducibles develop invariant subspaces and  thus become glued 
pairs. We name the irreducible on the invariant subspace after the centre node. The 
quotient subspace then gives, up to equivalence, the irreducible named after the node 
above in the appropriate node set. To see this, note that the quotient may be mapped 
to an  appropriate subset of walks by reflection in a line. As before, the glued pair will 
also be glued to one immediately below it, if one exists. Note, for dimension counting 
purposes, that these lower generic irreducibles, once absorbed into a projective module, 
d o  not become further glued. 

This procedure determines all the dimensions recursively. It is not a proof, but 
provides the organisational backbone for a proof to be discussed below. Note that 
the dimensions of the unitarisable irreducibles agree with those given in Jones (1983) 
or  Martin (1987). 

In  any case, following this procedure the dimensions will always add  up  as required. 
For example, with q = 1 ( r  = 3) in the case above we have node sets {(12,12)}, 
{ (  12, lo) ,  (12,8),  (12,4), (12,2)}, {(12,6)}. The corresponding projectives have irreduc- 
ible content: 

node: W, 1 2 ) ~  ((12, io),  (12,8), (12,4), (12,2)1, ((12, 6)) 
projective: PI p54 p209 p297 PI32 PI 1" 

content: 1 10 34 131 1 110 
34 10 131 34 1 131 

The first 10 (in the top row of contents) is the dimension of the irreducible associated 
with the top node of the set of four. By our prescription this is still the generic 
dimension given by (16). If this is correct (as we will show in the appendix), then by 
the general theorem in the introduction i t  implies that the corresponding projective 
has multiplicity 10. The top 34 is thus the generic multiplicity for the corresponding 
module, 44 (from (1611, less 10 copies which have become absorbed in making the 10 

10 34 131 
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copies of the previous projective. The other dimensions are then 131 = 165 -34 and  
1 = 132 - 131 by the same argument. 

The projectives are arranged in the table above in such a way as to exhibit their 
Loewy decomposition (Benson 1984). That is, for each projective P the top row is 
the composition of P / J P ,  the next J P /  J'P, then J'P/  J 3  P. Dimension counting (includ- 
ing glue) by summing over independent blocks in the projectives (there is at most one 
way of gluing one irreducible on top of another) the dimensions agree overall with 
the generic ones (and will obviously always d o  so if we follow this procedure). For 
example, in the case above we have independent blocks: 

[ 10.101 

[ti::: ;::::I [ 131.131 131.341 
34.131 34.34 (17) 

I 1.1 1.131 
131.1 131.131 

We have arranged the blocks to show how the dimensions match the generic case. 
The top left-hand number in each block is the dimension associated with the top; the 
rest is in the radical. 

We conclude this section with a technical remark for the more mathematically 
minded reader. The Bratelli diagram for the restrictions of irreducibles 
p : ( T k ( q ) / J k ) J (  T h - , ( q ) / J h - , )  (in the notation of Robinson 1961) may now be readily 
deduced, except for the restrictions of irreducibles associated with nodes on lines 
(s = mr, see above) which are awkward. In  these cases the restriction is to the irreducible 
content of the projective associated with the node immediately above s = mr in Th-,(q) .  

6. The structure of the algebra: operator approach 

Returning to the idempotents of the algebra, we note that in the Beraha cases the 
normalisations K ,  may diverge and the generic construction break down. There are 
then two possibilities. Firstly the divergence may be cancelled by the vanishing of 
another factor. For example, with four operators, the last idempotent derived from I ,  
is apparently not defined when q = 0 ( I ,  itself is not defined in this case). However if 
we evaluate the idempotent as a function of q, expand the resultant and  then put q = 0 
we find that it is well defined. Indeed a complete set of elementary operators derived 
from I ,  may be found by appropriate similarity transformations on the formally derived 
idempotents. Arranging the operators to indicate their role in the corresponding matrix 
algebra we have 

i U,U,U,U, U?U,lJ,U2 u-.u,u, U? U ,  U ,  U2 U,  U? U3 IJIA 
U4 U, U ,  U,  U4 U3 U1 U? U 4  U3 U ,  u4u3u~u2u, u d u , U , A  
U,U, U, U ,  U4 U,  U,  U ,  U, U2 U,Uz U3 U ,  U4Uz U, U1 U' U, U,  U,  IJ3  U ,  A (18) 
U3 U ,  U4 U ,  U ,  U2 U,  U, U3 U, U2 U, U,  U , A  I BU, U ,  U4 BU, U ,  L'. BU, U ,  BU, U ,  U2 U, BU, U i A  

where B = A T  = 1 / a (  U ,  U,U2 - U 2  - U,) and the well defined generic (i.e. original) 
idempotent is BU,U,A .  
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More generally we note that, although a single factor like (12) may not be defined 
at some r values, certain products of such factors can be well defined, or become well 
defined when acting on the idempotents they build on. We can think of these products 
as modifying the associated sequence or walk in more than just one step. In this case, 
if we can first find walks with idempotents which are defined then we can also have 
idempotents corresponding to modification by these well defined products. The further 
idea is that, as in (17) above, if an idempotent associated with a walk can be made 
well defined, then idempotents can be associated with every walk in its envelope (see 
the appendix). 

Now the idempotent for the straight up walk 12345678 . . ( n  + l ) ,  i.e. idem[n], is 
well defined (after expansion) if ( n  + 1) = j r  ( j  E Z + ) (see the appendix). Provided 
q # 0, Z,,, is thus well defined in all cases in which this idempotent is used. This provides 
a good supply of well defined idempotents to build on. The factor (121 has the effect 
of adding a 'diamond' to the previous walk, in the sense that the walk for the new 
idempotent is obtained from the old by, for example, figure 2. 

Figure 2. Adding a 'd iamond'  to a walk 

The factor is not defined if a line s = j r  cuts the diamond or touches its apex. The 
well defined products are the r x r diamonds whose corners each touch a line. For 
example the general 2 x 2 diamond of this kind (with q = 0, r = 2) is 

The only potentially divergent part of this factor is the coefficient of U,,  which is 

K , ~ K , ~ - ~ ) - ' ) .  
- 1  - 1  

- K , , - ~ K ~ , K ~ ~ ~ I K , ~ + A  K / ' + I  + ~ ~ ~ - 1 -  J ; s ( ~ , ~ ~ l  K,'-,  ) - I  + 
In fact the first factor here is ( j  - l ) / ( J +  1) and the second is zero. 

Note that this means that we can construct a well defined idempotent associated 
with the last walk whenever m + 1 = j r  ( j  E Z + ). This is why we expect the correspond- 
ing representation to remain irreducible. 

Alternatively the divergence may not cancel. In the case of I ,  (and q # O )  the 
divergent part is then in the radical of the algebra, for which the overall normalisation 
is unimportant (in this sector renormalisation is a similarity transformation, so up to 
equivalence we may make arbitrary renormalisations (Anderson and Fuller 1974)). 
We may thus adopt the prescription of renormalising the divergent part, whereupon 
the construction may be resurrected. Note that a divergent operator is still formally 
idempotent, so the renormalised divergent part is nilpotent. For other primitive 
idempotents divergences may be in the radical, or otherwise cancel with those in further 
idempotents. This is the operator manifestation of the inappropriate choice of basis 
in the ABF representation, and is corrected by the similarity transformations discussed 
above. A rule of thumb is that cancellation is achieved by mixing idempotents 
corresponding to walks related by reflection in a line s = j r ,  between two crossings of 
that line. To see this, consider the effect of adding a diamond across a line. The 
procedure is more complicated if there are multiple crossings. 
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A precise account of this programme is given in the appendix. Here we will restrict 
ourselves to an illustrative example. With three operators and q = 1 we have m = 0,2,4.  
For m = 0 we have 

10 = U ,  U3lq 

(the configuration 12121) and, formally, another idempotent 

(the configuration 12321). The corresponding nilpotent renormalised operator 

and the nilpotent renormalised ‘off-diagonal’ operators 

(1 - V w J * ) ~ o  and - 4 U J  

together form a nilpotent double-sided ideal subalgebra (the maximal one, as it will 
turn out). On quotienting by the radical (i.e. setting these terms to zero), Io gives a 
one-dimensional double-sided ideal subalgebra. For m = 2 we have generic idem- 
potents 

I , =  U,(l  -q-I’2u3) (12123) 

with 

and 

The sum of these last two is finite so, making an appropriate change of basis, these 
are replaced by 

( 1  - U,)(l-  Uz)U,( l  - U.)(1 - U,) and U,(1 - U2)  U I ( l  - U )  U,. 

Altogether for m = 2 we thus have a 3 x 3 dimensional double-sided ideal, as in the 
generic case. 

Again quotienting by the radical the last idempotent, I,, gives another one- 
dimensional double-sided ideal (we wrote out idemo[4] explicitly in the previous 
section). The 14-dimensional algebra thus consists of an 11-dimensional semisimple 
‘top’ and a three-dimensional radical. This should be compared with the corresponding 
representation theory example above. 

With q = 2 the m = 0 generic operators remain well defined. The first two m = 2 
idempotents are well defined and, together with their off-diagonals form a four- 
dimensional double-sided ideal subalgebra after quotienting by the radical. This radical 
is given by renormalising the remaining operators to 

Z*(l -V5U2)(1 - U,) 

and so on. Again this should be compared with the representation theory equivalent. 
In this way the radical may be found, and the structure of the maximal semisimple 

quotient obtained, in each case. The irreducible components then label the possible 
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long distance properties of any statistical mechanical model, as in the introduction. 
Specifically, there is an  irreducible representation associated with each possible value 
of m (except for r = 2, m = 0 where the dimension is zero). The asymptotic rate of 
increase of dimension per lattice site for a given m is 4 unless m < r - 1 (in which case 
the dimension is given by Martin (1986)). 

7. Concluding remarks 

We note the central role of the Whitney (or m = 0) representation in the construction 
of the regular representation. This representation is the one responsible for the unique 
free energy in statistical mechanical models, i.e. it gives the largest eigenvalue of the 
transfer matrix for positive x. It is remarkable that such a physically important 
representation should also be the one which restricts, in the 2n - 1 generator case, to 
the regular representation of the n - 1 generator subalgebra (which contains the entire 
spectrum of any possible model). This means, for example, that the spectrum of an  
appropriately inhomogeneously coupled 2n-site wide lattice Potts model carries the 
entire spectrum (up  to non-vanishing degeneracy) of all possible such models on an  
n-site wide lattice. The renormalisation group possibilities here are intriguing! 
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Appendix. Defining idempotents in the Beraha cases 

In this appendix we will give results which allow us to construct elementary operators 
exhibiting the algebraic structures we have discussed. 

( I )  Idempotents of the form idem[kr - I] 

To show that idem[jr - 11 is well defined we proceed as follows. For notational 
convenience define E,, = idem[ k - 13 and  

wp,, = 1 + up + upup-l + . . . + upup-, . . . U, 

where up = - K ~ - ~  Up-2 and W,,,+, = 1. Then with t = p  - s (s  E Z,) we find that 

= E t  fi [ w r + J , l + l  w:l-J+I]Er 
, = I  

where we have replaced E, in the product by noting that all the discarded terms 
commute through to the left o r  right and are orthogonal to E,. 
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Now if E ( k - , ) r  is defined ( E ,  is manifestly so) then putting d = ( k  - 1 ) r  and adopting 
the notation that in a product II; the variable is incremented negatively, so that, for 
example, IIf=2 U, = 1, but I I ; L 2  U, = u 2 u I ,  we have the following result for c < r + 1: 

x= fi [ ( fi u a ) (  b = d + j  E’’ u b ) ]  W i d - c + l  W d + c + l , d + l E d  
, = I  a = d - j + 2  

To see this, note that 

d + l  

x= , = I  fi [( u = d - , + 2  fi .a)(  b = d + j  u b ) ] (  W i d - c + l  b = d + c + l  n‘ u b + w d + c + I , d + l ) E d  

since udEd = 0, and that U d + Z  = 0 and the remaining unwanted terms cancel summand 
by summand between the two series. 

Every summand in every factor in E d + r  written as above is well defined, except for 
the term u d + l  in the first factor in the product. We must show that the action of this 
term on the terms on the right is to give a cancelling factor of K ~ + ~ .  First note that we 
need only keep track of summands with finite coefficients (since there are no other 
divergent ones). We may then apply the result above with c = 1. At the rth iteration 
on c we see that the required cancelling factor appears. This proves by iteration on 
k that such an idempotent Ekr is well defined. 

(2) ‘Big diamond’ idempotents 

First note that the product of factors corresponding to adding diamonds to a walk, as 
in figure 3, simplify greatly when acting on the idempotent Z corresponding to the 
original walk in such cases (because of the orthogonality properties of this idempotent) 
to give the elementary operator L, ,  ,+ (x )  I where 

k = l  h = l  m = k  

This is well defined provided I is well defined and, with k, k ’ E  Z+ and k ’ a  k, ( k  - 1 ) r  < 
j kr - 2 and k ‘ r  =s j + x < ( k ’ +  l ) r  - 2 (even though the full product of factors is not 
well defined in general). 

1.1 

Figure 3. Adding a row of diamonds to a walk 
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The products of factors corresponding to 'big' (i.e. r x r )  diamonds may then be 
shown to be well defined (when acting on the appropriate idempotents), by building 
them up in strips using ( A l ) .  The proof is non-trivial, since the first strip required 
violates the limits above and is not itself well defined. However, all the subsequent 
strips are well defined, so it is possible to keep track of the divergent terms. The 
divergence vanishes on the application of the rth (and final) strip. 

Using these observations we can construct well defined operators associated with 
the irreducible representations of the TL algebra for any r. The procedure is as follows. 
The initial idempotent is made well defined by discarding its divergent part (quotienting 
by the radical). We may then construct further well defined operators by adding 
diamonds until the walk ( 1 2 ) k 3 4 . .  2 r . .  r . .  2 r . .  r . .  2 r . .  . . . r . .  ( m +  1 )  is achieved 
(where k < r +  1 ) .  To see that this is well defined, consider the walk 1 2 3 4 . .  2 r . .  r, 
which gives a well defined operator from which the generalisations may be constructed. 
We may then add as many big diamonds as possible as in figure 4 .  

/\ 

2 r  

r 

/ v v v v v v v v v v v v v " v  

Figure 4. Adding 'big' diamonds to a walk 

Small diamonds may then be added to the lower left of this picture until there are 
no more places for them to go on the left of the main peak. We will show how the 
operators within the envelope so produced are made well defined in the next section. 
We then take the initial idempotent and add the longest strip possible of the kind 
shown in figure 3. Note that the resultant walk is not in the envelope of the above 
construction. We then repeat the above construction with this new starting shape. We 
then add another strip and repeat, and so on. Provided we can make all the operators 
in the envelope well defined we then have an idempotent for each walk which does 
not touch the line above m + l  after i t  has last touched the line below m + l .  The 
number of such walks is clearly the dimension of the corresponding irreducible 
representation (consider the regular representation construction, and turn the diagram 
on its side!). A simple reflection argument also shows that the walks not accounted 
for in this scheme are in one-to-one correspondence with counted walks for the 
representation immediately above this one in the node set. The unaccounted walks 
do touch the line above after they last touch the line below. The reflection is to replace 
the steps after the last touching of the line above with their image in this line. This 
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automatically takes the endpoint m + 1 to the point above it in the node set for each 
of these walks ( m ’ +  1, say). Because none of the original walks touches the line below 
m + 1 after it touches the line above, the reflection never touches the line above m’+ 1 
after it last crosses the line below m ’ +  1. All walks with this property are generated, 
but these are precisely the walks counted in the original construction to m ’ + l .  The 
argument is as follows (generalising from Martin (1986), where the conclusion is 
wrongly stated!). 

First note that no two distinct walks reflect to the same walk. Then note that this 
is also true for the reverse reflection from counted walks in the case above. It is a 
simple combinatorial exercise to show that the dimensions add  up  (see, for example, 
Westbury 1988). 

The interpretation of the operators associated on the left with counted and  on the 
right with uncounted walks (and  vice versa) is that they cover the part of the radical 
gluing the corresponding two irreducible representations together (see the example of 
a Loewy decomposition given in the text). The operators associated on the left and  
right with uncounted walks glue together two copies of the irreducible above in the 
node set. We see that the whole structure is accounted for in this way, the dimensions 
being arranged as in (17). 

(3) Other operators 

It remains to show that every operator in the envelope of the well defined operators 
may be made well defined. Without loss of generality we can consider building u p  
from the initial position shown in figure 5, which we may take to have a well defined 
idempotent associated (call it I). Then adding a diamond in the ith position we have 

N = K k r K k r - l ( l  - Uj/Kkr-i)Z(l - u ~ / K k r - i )  

K k r K k r +  I ( 1 - U,, I / K k r )  N (  1 - UI+ I / K h - 1  

(A2) 

(A3)  
where K k r K k r T l  is well defined. We write these formal idempotents out in a matrix, 
together with their off-diagonal mixings, and make linear transformations along them 
which preserve the trace: 

where K ~ ,  is divergent. Adding a diamond in the ( i  + 1)th position we then get 

3 N G ) N ( 1  - UI+i/Kkr) 
[=)(I - u,+l/Kkr)N KkrKkrTI(1 - u , , , / ~ k ~ ) N ( l  - U , + l / ~ k r )  

U,+,(N/Kkr) U,+l iU+1(N/Kkr ) ( f i (1  - U,+l/J;F), 
* [i(1 - U t + i / f i ) ( N / K k r )  u1-1 

Now since each of the formal idempotents separately was orthogonal to all other 
primitive idempotents, these linear combinations will be similarly orthogonal. Since 

- U , + i / f i ) ( N / K k r ) ( G ( l  - U,+I/&)) 

I 

Figure 5. The walk associated with idempotent I .  
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these new objects are also idempotent, mainfestly mutually orthogonal and well defined, 
they are the objects we want to replace the undefined versions. Similarly the four 
idempotents shown in figure 6 must be mixed. Each has a double divergence. Mixing 
them in pairs eliminates one divergence as above, mixing the pairs in the same way 
(i.e. cross producting copies of the above transformation) then eliminates the remaining 
divergence. Note that these walks may be seen as reflections of one another in the 
line. By the same measure the pair shown in figure 7 ( a )  must be mixed, the pair in 
figure 7 ( b )  must be mixed, and so on. It is easy to check using ( A l )  that the divergences 
cancel between the two in figure 7(a ) ,  for example, the first is 

M = K , K , - l ( l -  u , - * / K r - l ) z ( l -  U , - 2 / K r - 1 )  

with an overall K ,  divergence, and the second is 
2 

K r + 2 K r +  1 ( K r +  I K r  K r K r -  I ( 1  - ut - 1 / K r  + U - I /  Kr+  1 K r  ) ( 1 - Vi/ K r -  I 

where K , + ~ K , - ~  = 1 and K , + ~ K ,  = - 1  from the definition, cancellation then occurs on 
application of the TL relations. 

The construction of well defined operators within big diamonds proceeds in the 
same way. For example, the mixings in a 3 x 3 diamond are shown in figure 8. 

Up to some trivial variations for dealing with the envelope of non-big-diamond 
walks on the left of figure 4, this completes the argument. 

(4) Contributions to the radical 

We may check that the radical glues together irreducibles in the reflection pattern 
described in the text as follows. Consider the formal idempotent for the top walk in 

Figure 6. Walks obtained from I .  

( b )  

Figure 7. More walks obtained from I .  



Temperley- Lieb algebras 29 

all together; the compliment; and the set  

a l l  t o g e t h e r .  

Figure 8. Walks within a big diamond. 

figure 9(a) which is (from (Al) ,  and with E = idem2[kr-21) 

UI 
= L2,2( kr - 2) - E LE,( kr - 2 ) .  4 

We note that this is well defined apart from an overall factor of Kkr  and any divergences 
in U , E  (see later). Now consider the ‘reflection’ in s = kr, the walk in figure 9(b) 
which is (using the Ui+ invariance of idem[b]) 

idem[kr] =idem,[kr- 1](1 - ~ k r L i l )  idem,[kr-l]. 

The only divergence here is in the term containing - K k r U I .  Now K,+, = K ,  and 
K - ,  = 1 J K , + ~ ,  so we have 

k r  

2 
1 

la) 

Figure 9. A walk associated with the radical, and its ‘reflection’ 
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where the denominator is just ( K ~ K ~ , - I ) ” ~  = 1. The divergent part of idem[kr] is thus 
- K k A .  Since idem[kr - 11 is finite, A is finite as required and the Kkr  divergence is 
the worst divergence overall. We see that the divergences here and above are equal 
and opposite. We build further walks from figures 9 ( a )  and ( b )  prefixed by the walk 
121212.. 121 in identical ways (hence continued cancellations) until the new walks 
next touch the line s = kr (a  situation we have already discussed). If we write idem[ kr] = 
- K k A +  B (A, B well defined) then since, formally, idem[ krI2 = idem[kr] we have 
A2 = 0, and similarly U,A = 0 ( i  = 1, . . . , kr) and so on. Thus A is a double-sided 
nilpotent ideal in T k , - l ( q ) .  Furthermore, on putting A = 0 we find B2 = B, ViB = 0 and 
so on. This procedure may be generalised to other reflections to identify the rest of 
the radical. 
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